Abstract

AbstractThis paper presents the reconfigurable legged mobile lander (ReLML) with its modes from adjusting, landing, to roving. Based on the invented metamorphic variable-axis revolute hinge, the actuated link has three alternative phases of rotating around either of two orthogonal topological axes or locking itself to the base as a rigid body. This property enables the ReLML to switch among three modes and within two driving states (as the adjusting and roving modes are active mechanisms driven by motors, while the landing truss is regarded as a passive mechanism driven by the touchdown impact force exerted on footpad). The unified differential kinematics for the ReLML is established by the screw-based Jacobian modeling, unifying both active and passive operation phases throughout all modes. Afterward, the distributions of workspaces and singularity loci in three modes are discussed for the multi-solution sake, and the selection principle of the practicable solution pattern is proposed to obtain the actual workspace, singularity loci, and configurations. The results stemming from the Jacobian-matrix-based method and the Grassmann-geometry-based method give mutual authentication. Finally, as prospects for promising applications, four bifurcated evolution routes and configuration transitions are figured out and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.