Abstract

An adaptive fixed-time dynamic surface tracking control scheme is developed in this paper for a class of strict-feedback nonlinear systems, where the control input is subject to hysteresis dynamics. To deal with the input hysteresis, a compensation filter is introduced, reducing the difficulty of design and analysis. Based on the universal approximation theory, the radial basis function neural networks are employed to approximate the unknown functions in the nonlinear dynamics. On this basis, fixed-time adaptive laws are constructed to approximate the unknown parameters. The dynamic surface technique is utilized to handle the complexity explosion problem, where fixed-time performance is ensured. Moreover, the designed controller can avoid singularities and achieve fixed-time convergence of error signals. Simulation results verify the efficacy of the method developed, where a comparison between the scheme developed with existing results is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.