Abstract

A computer algorithm for extracting a quaternion from a direction-cosine matrix (DCM) is described. The quaternion provides a four-parameter representation of rotation, as against the nine-parameter representation afforded by a DCM. Commanded attitude in space shuttle steering is conveniently computed by DCM, while actual attitude is computed most compactly as a quaternion, as is attitude error. The unit length of the rotation quaternion, and interchangeable of a quaternion and its negative, are used to advantage in the extraction algorithm. Protection of the algorithm against square root failure and division overflow are considered. Necessary and sufficient conditions for handling the rotation vector element of largest magnitude are discussed

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.