Abstract
In this article we use techniques of proof mining to analyse a result, due to Yonghong Yao and Muhammad Aslam Noor, concerning the strong convergence of a generalized proximal point algorithm which involves multiple parameters. Yao and Noor's result ensures the strong convergence of the algorithm to the nearest projection point onto the set of zeros of the operator. Our quantitative analysis, guided by Fernando Ferreira and Paulo Oliva's bounded functional interpretation, provides a primitive recursive bound on the metastability for the convergence of the algorithm, in the sense of Terence Tao. Furthermore, we obtain quantitative information on the asymptotic regularity of the iteration. The results of this paper are made possible by an arithmetization of the $\limsup$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.