Abstract

This paper studies the formation of singularities in smooth solutions of the relativistic Euler equations of Chaplygin gases with cylindrically symmetric rotating structures. This is a nonhomogeneous hyperbolic system with highly nonlinear structures and fully linearly degenerating characteristic fields. We introduce a pair of auxiliary functions and use the characteristic decomposition technique to overcome the influence of the rotating structures in the system. It is verified that smooth solutions develop into a singularity in finite time and the mass-energy density tends to infinity at the blowup point for a type of rotating initial data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call