Abstract
AbstractThe space and initial singularities are reexamined in the most reliable solutions to the Einstein's field equations (EFE), that is, the Einstein–Gilbert–Straus (EGS) metric. In discretized Finsler geometry, additional curvatures and thereby geometric structures likely emerge, which are distinct from the conventional spacetime curvatures and geometric structures that the Einstein's theory of general relativity introduced. The generalized fundamental tensor, which is obtained in the Fisleriean geometry, imposes quantum‐mechanically revisions on the Landau–Raychaudhuri evolution equations. The time‐like geodesic congruence in EGS metric is then analyzed, analytically and numerically. The evolution of a family of trajectories whose congruence is defined by the flow lines generated by velocity fields is determined. We conclude that both two types of singularities seem to be attenuated or even regulate. With the singularity attenuation, we refer to the fundamental nature of the additional curvatures at quantum relativistic scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.