Abstract
A first-order differential equation of Clairaut type has a family of classical solutions, and a singular solution when the contact singular set is not empty. The projection of a singular solution of Clairaut type is an envelope of a family of fronts (Legendre immersions). In these cases, the envelopes are always fronts. We investigate singular points of envelopes for first-order ordinary differential equations, first-order partial differential equations, and systems of first-order partial differential equations of Clairaut type, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.