Abstract
Dissipative systems can often exhibit wavelength-dependent loss rates. One prominent example is Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a leading candidate for studying the physics of interacting photons and also hold promise as a platform for quantum information. In this system, dissipation is in the form of quantum diffusion, i.e., proportional to $k^2$ ($k$ being the wavevector) and vanishing at long wavelengths as $k\to 0$. Here, we show that one-dimensional condensates subject to this type of loss are unstable to long-wavelength density fluctuations in an unusual manner: after a prolonged period in which the condensate appears to relax to a uniform state, local depleted regions quickly form and spread ballistically throughout the system. We connect this behavior to the leading-order equation for the nearly-uniform condensate -- a dispersive analogue to the Kardar-Parisi-Zhang (KPZ) equation -- which develops singularities in finite time. Furthermore, we show that the wavefronts of the depleted regions are described by purely dissipative solitons within a pair of hydrodynamic equations, with no counterpart in lossless condensates. We close by discussing conditions under which such singularities and the resulting solitons can be physically realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.