Abstract

This paper studies a class of Gaussian random fields defined on lattices that arise in pattern analysis. Phase transitions are shown to exist at a critical temperature for these Gaussian random fields. These are established by showing discontinuous behavior for certain field random variables as the lattice size increases to infinity. The discontinuities in the statistical behavior of these random variables occur because the growth rates of the eigenvalues of the inverse of the variance-covariance matrix at the critical temperature are different from the growth rates at noncritical temperatures. It is also shown that the limiting specific heat has a phase transition with a power law behavior. The critical temperature occurs at the end point of the available values of temperature. Thus, although the critical behavior is not extreme, caution should be exercised when using such models near critical temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.