Abstract

We consider the inviscid unsteady Prandtl system in two dimensions, motivated by the fact that it should model to leading order separation and singularity formation for the original viscous system. We give a sharp expression for the maximal time of existence of regular solutions, showing that singularities only happen at the boundary or on the set of zero vorticity, and that they correspond to boundary layer separation. We then exhibit new Lagrangian formulae for backward self-similar profiles, and study them also with a different approach that was initiated by Elliott–Smith–Cowley and Cassel–Smith–Walker. One particular profile is at the heart of the so-called Van-Dommelen and Shen singularity, and we prove its generic appearance (that is, for an open and dense set of blow-up solutions) for any prescribed Eulerian outer flow. We comment on the connection between these results and the full viscous Prandtl system. This paper combines ideas for transport equations, such as Lagrangian coordinates and incompressibility, and for singularity formation, such as self-similarity and renormalisation, in a novel manner, and designs a new way to study singularities for quasilinear transport equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.