Abstract
ABSTRACTWe consider the Sobolev space over of square integrable functions whose gradient is also square integrable with respect to some positive weight. It is well known that smooth functions are dense in the weighted Sobolev space when the weight is uniformly bounded from below and above. This may not be the case when the weight is unbounded. In this paper, we focus on a class of two-dimensional weights where the density of smooth functions does not hold. This class was originally introduced by V.V. Zhikov; such weights have a unique singularity point of non-zero capacity. Following V.V. Zhikov, we first give a detailed analytical description of the weighted Sobolev space. Then we explain how to use Dirichlet forms theory to associate a diffusion process to such a degenerate non-regular space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.