Abstract
In this article, we are interested in optimal aircraft trajectories in climbing phase. We consider the cost index criterion which is a convex combination of the time-to-climb and the fuel consumption. We assume that the thrust is constant and we control the flight path angle of the aircraft. This optimization problem is modeled as a Mayer optimal control problem with a single-input affine dynamics in the control and with two pure state constraints, limiting the Calibrated AirSpeed (CAS) and the Mach speed. The candidates as minimizers are selected among a set of extremals given by the maximum principle. We first analyze the minimum time-to-climb problem with respect to the bounds of the state constraints, combining small time analysis, indirect multiple shooting and homotopy methods with monitoring. This investigation emphasizes two strategies: the common CAS/Mach procedure in aeronautics and the classical Bang-Singular-Bang policy in control theory. We then compare these two procedures for the cost index criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ESAIM: Mathematical Modelling and Numerical Analysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.