Abstract

Abstract The singular vectors of a chemical transport model are the directions of maximum perturbation growth over a finite time interval. They have proved useful for the estimation of error growth, the initialization of ensemble forecasts, and the optimal placement of adaptive observations. The aim of this paper is to address computational aspects of singular vector analysis for atmospheric chemical transport models. The distinguishing feature of these models is the presence of stiff chemical interactions. A projection approach to preserve the symmetry of the tangent linear–adjoint operator for stiff systems is discussed, and extended to 3D chemical transport simulations. Numerical results are presented for a simulation of atmospheric pollution in East Asia in March 2001. The singular values and the structure of the singular vectors depend on the length of the simulation interval, the meteorological data, the location of the optimization region and the selection of optimization species, the choice of error norms, and the size of the optimization region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.