Abstract
In the field of face recognition, a key issue is whether there are a sufficient number of face training samples with valid information. Due to the complexity of human face images, face recognition is easy to be affected by the external environment such as light intensity, gesture expression, hairstyle, and occlusion. Therefore, it is difficult to obtain enough effective samples in practical applications. In this paper, we propose a new algorithm that generates virtual images by utilizing the information of the test sample via singular value decomposition. The virtual images not only extend the training sample set but also can better adapt to the test sample. In addition, we use the weighted score fusion scheme to calculate the ultimate result, which can better take advantages of data from different sources including original images and virtual images. Experimental results on the Extended Yale_B, AR, GT, ORL, and FERET face databases prove that our algorithm can obtain satisfactory performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.