Abstract
Singular-value decomposition (SVD) of a linear imaging system gives information on the null and measurement components of object and image and provides a method for object reconstruction from image data. We apply SVD to through-focus imaging systems that produce several two-dimensional images of a three-dimensional object. Analytical expressions for the singular functions are derived in the geometrical approximation for a telecentric, laterally shift-invariant system linear in intensity. The modes are evaluated numerically, and their accuracy confirmed. Similarly, the modes are derived and evaluated for a continuous image representing the limit of a large number of image planes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.