Abstract
In this paper, we address a super-resolution problem of generating a high-resolution image from low-resolution images. The proposed super-resolution method consists of three steps: image registration, singular value decomposition (SVD)-based image fusion and interpolation. The contribution of this work is two-fold. First we customize an image registration approach using Scale Invariant Feature Transform (SIFT), Belief Propagation and Random Sampling Consensus (RANSAC) for super-resolution. Second, we propose SVD-based fusion to integrate the important features from the low-resolution images. The proposed image registration and fusion steps effectively maintain the important features and greatly improve the super-resolution results. Results, for a variety of image examples, show that the proposed method successfully generates high-resolution images from low-resolution images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.