Abstract

Electromyogram (EMG) or muscle artifacts frequently affect electrocardiogram (ECG) readings. These artifacts make the required information in the ECG signal difficult to see. In this study, we introduced the singular spectrum analysis (SSA), a powerful subspace-based method for removing EMG artifacts from ECG data. In order to effectively extract the desired component from the tainted ECG data, we presented a new grouping approach and set a threshold. First, a process known as embedding converts a single channel signal into several channels of signals or data. The orthogonal eigenvectors are then calculated using singular value decomposition(SVD) from the multichannel data's covariance matrix. A threshold is selected to locate these eigenvectors, which are utilized to generate the required subspace. After locating the subspace, the multichannel data is simply projected into it, followed by a method called diagonal averaging which will create the original time series and extract the ECG signals. Keywords: Electrocardiogram, EMG artifact, Singular Spectrum Analysis, Embedding, SVD, Mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.