Abstract

In this paper we present some very recent results regarding existence, uniqueness, and multiplicity of solutions for quasilinear elliptic equations and systems, exhibiting both singular and convective reaction terms. The importance of boundary conditions (Dirichlet, Neumann, or Robin) is also discussed. Existence is achieved via sub-supersolution and truncation techniques, fixed point theory, nonlinear regularity, and set-valued analysis, while uniqueness and multiplicity are obtained by monotonicity arguments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.