Abstract
AbstractBy the quantization condition compact quantizable Kähler manifolds can be embedded into projective space. In this way they become projective varieties. The quantum Hilbert space of the Berezin-Toeplitz quantization (and of the geometric quantization) is the projective coordinate ring of the embedded manifold. This allows for generalization to the case of singular varieties. The set-up is explained in the first part of the contribution. The second part of the contribution is of tutorial nature. Necessary notions, concepts, and results of algebraic geometry appearing in this approach to quantization are explained. In particular, the notions of projective varieties, embeddings, singularities, and quotients appearing in geometric invariant theory are recalled.KeywordsLine BundleProjective VarietyStar ProductAmple Line BundleCoordinate RingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.