Abstract

We consider a nonlinear Dirichlet problem driven by the p-Laplace operator and with a right-hand side which has a singular term and a parametric superlinear perturbation. We are interested in positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter λ>0 varies. In addition, we show that for every admissible parameter λ>0 the problem has a smallest positive solution u‾λ and we establish the monotonicity and continuity properties of the map λ→u‾λ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.