Abstract

We develop a new approach to the analysis of pseudodifferential operators with small parameter 'epsilon' in (0,1] on a compact smooth manifold X. The standard approach assumes action of operators in Sobolev spaces whose norms depend on 'epsilon'. Instead we consider the cylinder [0,1] x X over X and study pseudodifferential operators on the cylinder which act, by the very nature, on functions depending on 'epsilon' as well. The action in 'epsilon' reduces to multiplication by functions of this variable and does not include any differentiation. As but one result we mention asymptotic of solutions to singular perturbation problems for small values of 'epsilon'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.