Abstract
In this paper the rigorous justification of the formal asymptotic expansions constructed by the method of matched inner and outer expansions is established for the three-dimensional steady flow of a viscous, incompressible fluid past an arbitrary obstacle. The justification is based on the series representation of the solution to the Navier-Stokes equations due to Finn, and it involves the reductions of various exterior boundary value problems for the Stokes and Oseen equations to boundary integral equations of the first kind from which existence as well as asymptotic error estimates for the solutions are deduced. In particular, it is shown that the force exerted on the obstacle by the fluid admits the asymptotic representation F = A 0 + A 1 Re + O( Re 2 ln Re −1) as the Reynolds number Re → 0 +, where the vectors A 0 and A 1 can be obtained from the method of matched inner and outer expansions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.