Abstract

In this paper, Goddard's problem of maximizing the final altitude of a sounding rocket (a singular problem of optimal control) is analyzed using singular perturbation methods. The problem is first cast in singular perturbation form and then solved to zero order by adding boundary-layer corrections to the reduced solution. For a quadratic drag law, a closed-form solution is obtained, although consideration of a numerical example indicates that this solution is not useful for practical sounding rockets. However, use of state variable transformations allows a very accurate numerical approximation to be constructed. It is concluded that application of singular perturbation methods to the well-known sounding rocket problem indicates that these methods may have utility in dealing with singular problems of optimal control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call