Abstract

We consider constrained partial differential equations of hyperbolic type with a small parameter ε>0, which turn parabolic in the limit case, i.e., for ε=0. The well-posedness of the resulting systems is discussed and the corresponding solutions are compared in terms of the parameter ε. For the analysis, we consider the system equations as partial differential–algebraic equation based on the variational formulation of the problem. For a particular choice of the initial data, we reach first- and second-order estimates. For general initial data, lower-order estimates are proven and their optimality is shown numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.