Abstract

The problem of the optimal microalgal growth is considered here. The objective is to maximize the specific growth rate of microalgae by manipulating the irradiance. The model describing the growth of microalgae is based on the mechanistic description in the form of the so called photosynthetic factory (PSF) resulting into the second order bilinear system which is, nevertheless, known in biotechnological literature to comprise many important features of microalgal growth. To obtain the solution of optimal control problem, the singular perturbation approach is used here to reduce fast components of system dynamics leading to a less dimensional system with more complex performance index which allows a nice analytical solution. Its infinite horizon analysis shows that the optimal solution on large time intervals tends to the optimal steady state of PSF thereby supporting the hypothesis often mentioned in the biotechnological literature. Finally, the numerical algorithm to compute optimal control is applied to the original non-reduced system giving very similar results as the reduction based approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.