Abstract

We study singularly perturbed time dependent convection–diffusion equations in a circular domain. Considering suitable compatibility conditions, we present convergence results and provide as well approximation schemes and error estimates. To resolve the oscillations of classical numerical solutions due to the stiffness of our problem, we construct, via a specific boundary layer analysis, the so-called boundary layer elements which absorb the boundary layer singularities. Using a P1 classical finite element space enriched with the boundary layer elements, we obtain an accurate numerical solution using a quasi-uniform mesh, that is without refinement of the mesh in the boundary layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.