Abstract

Mikhlin’s ideas and results related to the theory of spaces Lρp(·) with nonstandard growth are developed. These spaces are called Lebesgue spaces with variable index; they are used in mechanics, the theory of differential equations, and variational problems. The boundedness of Fourier multipliers and singular operators on the spaces Lρp(·) are considered. All theorems are derived from an extrapolation theorem due to Rubio de Francia. The considerations essentially use theorems on the boundedness of operators and maximal Hardy-Littlewood functions on Lebesgue spaces with constant index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.