Abstract
We prove the well-posedness of the Cauchy problem governed by a linear mono-energetic singular transport equation (i.e., transport equation with unbounded collision frequency and unbounded collision operator) with specular reflecting and periodic boundary conditions on L p spaces. The large time behaviour of its solution is also considered. We discuss the compactness properties of the second-order remainder term of the Dyson–Phillips expansion for a large class of singular collision operators. This allows us to evaluate the essential type of the transport semigroup from which the asymptotic behaviour of the solution is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.