Abstract

Transformation optics, which is generically applicable to other classical waves such as acoustic and elastic waves, provides an emerging design paradigm to manipulate waves. However, some lenses and optical-transformation devices require a singular refractive index; meeting this requirement is a significant challenge. A method called transmutation can relax some types of index singularity into finite anisotropy around the singularity. Here, we show that such lenses with a singularity for flexural waves can be obtained by approaching a near-zero thickness of the plate precisely at the location of the singularity. As examples, we demonstrate a series of Eaton lenses theoretically and experimentally by projecting the refractive index in space onto the thickness in plates and by working in a broad frequency range in which impedance mismatch is negligible. This framework offers an insight into feasible methods that can be used to develop singular devices such as cloaking devices on thin flexible curved plates and can be further extended to a general methodology for shaping elastic waves. We hope that this elastic platform can also be a test bed to indirectly study unprecedented phenomena enabled by gravitational and quantum fields in terms of analog models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call