Abstract
We study singular left-definite Sturm–Liouville problems with an indefinite weight function. The existence of eigenvalues is established based on the existence of eigenvalues of corresponding right-definite problems. Furthermore, for each singular left-definite problem with limit-circle non-oscillatory endpoints we construct a regular left-definite problem with the same eigenvalues and use it to obtain properties of eigenvalues and eigenfunctions. Inequalities among eigenvalues recently established for regular left-definite problems are extended to the singular case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.