Abstract

The problem of a particle of mass m in the field of the inverse-square potential α∕r2 is studied in quantum mechanics with a generalized uncertainty principle, characterized by the existence of a minimal length. Using the coordinate representation, for a specific form of the generalized uncertainty relation, we solve the deformed Schrödinger equation analytically in terms of confluent Heun functions. We explicitly show the regularizing effect of the minimal length on the singularity of the potential. We discuss the problem of bound states in detail and we derive an expression for the energy spectrum in a natural way from the square integrability condition; the results are in complete agreement with the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.