Abstract
We prove a Fredholm criterion for operators in the Banach algebra of singular integral operators with matrix piecewise continuous coefficients acting on a variable Lebesgue space with a radial oscillating weight over a logarithmic Carleson curve. The local spectra of these operators are massive and have a shape of spiralic horns depending on the value of the variable exponent, the spirality indices of the curve, and the Matuszewska-Orlicz indices of the weight at each point. These results extend (partially) the results of A. Bottcher, Yu. Karlovich, and V. Rabinovich for standard Lebesgue spaces to the case of variable Lebesgue spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.