Abstract
In the contact problem of a rigid flat-ended punch on an elastic half-plane, the contact stress under punch is studied. The angle distribution for the stress components in the elastic medium under punch is achieved in an explicit form. From obtained singular stress distribution, the punch singular stress factor (abbreviated as PSSF) is defined. A fundamental solution for the multiple flat punch problems on the elastic half-plane is investigated where the punches are disconnected and the forces applied on the punches are arbitrary. The singular integral equation method is suggested to obtain the fundamental solution. Further, the contact problem for rigidly connected punches on an elastic half-plane is considered. The solution for this problem can be considered as a superposition of many particular fundamental solutions. The resultant forces on punches are the undetermined unknowns in the problem, which can be evaluated by the condition of relative descent between punches. Finally, the resultant forces on punches can be determined, and the PSSFs at the corner points can be evaluated. Numerical examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.