Abstract
This paper is devoted to studying Hamilton-Jacobi-Bellman equations with distribution-valued coefficients, which are not well-defined in the classical sense and are understood by using the paracontrolled distribution method introduced in (Gubinelli et al. in Forum Math Pi 3(6):1, 2015). By a new characterization of weighted Hölder spaces and Zvonkin’s transformation we prove some new a priori estimates, and therefore establish the global well-posedness for singular HJB equations. As applications, we obtain global well-posedness in polynomial weighted Hölder spaces for KPZ type equations on the real line, as well as modified KPZ equations for which the Cole–Hopf transformation is not applicable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.