Abstract

AbstractWe will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system urn:x-wiley:0025584X:media:mana201700215:mana201700215-math-0001where are numbers belonging to the interval [0, 2), V is a continuous potential bounded below on by a positive constant and the functions f and g possess exponential growth range established by Trudinger–Moser inequalities in Lorentz–Sobolev spaces. The proof involves linking theorem and a finite‐dimensional approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.