Abstract
We extend the concept of genuine rigidity of submanifolds by allowing mild singularities, mainly to obtain new global rigidity results and unify the known ones. As one of the consequences, we simultaneously extend and unify Sacksteder and Dajczer-Gromoll theorems by showing that any compact $n$-dimensional submanifold of ${\mathbb R}^{n+p}$ is singularly genuinely rigid in ${\mathbb R}^{n+q}$, for any $q < \min\{5,n\} - p$. Unexpectedly, the singular theory becomes much simpler and natural than the regular one, even though all technical codimension assumptions, needed in the regular case, are removed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.