Abstract
We apply a new numerical method, the singular Fourier–Padé (SFP) method invented by Driscoll and Fornberg [Numer. Algorithms, 2001, 26, 77–92; The Gibbs Phenomenon in Various Representations and Applications, 2011], to price European-type options in Lévy and affine processes. The motivation behind this application is to reduce the inefficiency of current Fourier techniques when they are used to approximate piecewise continuous (non-smooth) probability density functions. When techniques such as fast Fourier transforms and Fourier series are applied to price and hedge options with non-smooth probability density functions, they cause the Gibbs phenomenon; accordingly, the techniques converge slowly for density functions with jumps in value or derivatives. This seriously adversely affects the efficiency and accuracy of these techniques. In this paper, we derive pricing formulae and their option Greeks using the SFP method to resolve the Gibbs phenomenon and restore the global spectral convergence rate. Moreover, we show that our method requires a small number of terms to yield fast error convergence, and it is able to accurately price any European-type option deep in/out of the money and with very long/short maturities. Furthermore, we conduct an error-bound analysis of the SFP method in option pricing. This new method performs favourably in numerical experiments compared with existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.