Abstract
For ergodic 1d Jacobi operators we prove that the random singular components of any spectral measure are almost surely mutually disjoint as long as one restricts to the set of positive Lyapunov exponent. In the context of extended Harper's equation this yields the first rigorous proof of the Thouless' formula for the Lyapunov exponent in the dual regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.