Abstract

Singular Boolean networks are introduced in this paper. Via semi-tensor product of matrices and the matrix expression of logical functions, two kinds of the condensed algebraic expressions of singular Boolean networks are obtained. The normalization problem of singular Boolean networks is addressed; that is, under what condition singular Boolean networks can be converted into normal Boolean networks with algebraic restrictions. Then one sufficient condition and one necessary and sufficient condition are derived for the normalization problem. Furthermore, the solvability of singular Boolean networks is discussed and the concept of admissible initial values of singular Boolean networks is presented. Finally, fixed points and cycles of singular Boolean networks are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.