Abstract

Epoxidation of styrene derivatives, sulfoxidation of thioanisole derivatives, and hydroxylation of toluene derivatives by a nonheme manganese(IV)-oxo complex binding triflic acid, [(N4Py)MnIV(O)]2+-(HOTf)2 [1-(H+)2], and scandium triflate, [(N4Py)MnIV(O)]2+-(Sc(OTf)3)2 [1-(Sc3+)2], occur via outer-sphere electron-transfer (OSET) pathways, exhibiting singly unified driving force dependence, enabling one to predict absolute values of the second-order rate constants of these three types of substrate oxidations by the manganese(IV)-oxo complex, using the Marcus theory of electron transfer. When [(N4Py)MnIV(O)]2+ (1) was replaced by [(N4Py)FeIV(O)]2+ (2), OSET pathways were changed to inner-sphere electron-transfer (ISET) pathways. The difference in the OSET versus ISET pathways is clarified based on the difference in the Lewis basicity of the oxo moieties in 1 and 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.