Abstract

North-west Spitsbergen consists of a complex of Caledonian and Grenvillian crystalline rocks, situated at the north-west corner of the Barents Shelf. The aim of this study is to understand the extent of pre-Caledonian basement rocks and their protoliths. Micas and zircon grains from six rocks from north-west Spitsbergen have been dated by the 40Ar/39Ar and single-zircon Pb-evaporation methods. Two grey granites yielded Late Caledonian mica 40Ar/39Ar and zircon ages of ca. 420-430 My, with inherited zircon grains as old as 1725 My. Zircon grains from a gneissose granite xenolith in a grey granites gave crystallization ages of ca. 960 My; some grains from a migmatite neosome show similar ages. Zircon grains yielding Archean and late Palaeoproterozoic ages (1600-1800 My) are interpreted as xenocrysts of detrital origin. The youngest ages obtained from detrital zircon grains from a greenschist facies quartzite of the Signehamna unit are ca. 1800 My. Similar schists are included as xenoliths in the 960 My old gneissose granite; therefore, the sedimentary protoliths of the unit are Mesoproterozoic. The dating results suggest a significant tectonothermal event during Grenvillian time; subsequent Caledonian events had less extensive thermal effects. However, it is still a matter of debate whether Grenvillian or Caledonian metamorphism produced the majority of the migmatites. A large population of zircon grains with Late Palaeoproterozoic ages suggests a wide surface exposure of rocks of this age in the source area, with some Archean zircons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call