Abstract

Single-wall carbon nanotubes (SWCNT) possess a small size, large surface area, and high reactivity, which enable them to permeate the cytoplasmic or nuclear membrane and attach to biological molecules. During medical applications, SWNCT are usually administered intravenously, which enhances interaction with blood components. Yet despite this exposure potential, safety evaluation studies of SWCNTs focused on human blood cells are still lacking. Therefore, this study was undertaken to examine cytotoxicity, genotoxicity, and proinflammatory responses following SWCNT treatment of phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes (PBL). SWCNT were found to inhibit cell growth, as well as to induce DNA breakage, and micronuclei (MN) formation via reactive oxygen species (ROS) generation. The addition of N-acetylcysteine (NAC) a cell-permeable antioxidant, decreased ROS generation, cytotoxicity, and genotoxicity produced by SWCNT treatment. In addition, SWCNT induced tumor necrosis factor (TNF)-α release after 24 h, yet this phenomenon was not related to ROS generation, as antioxidant NAC treatment did not affect increased proinflammatory cytokine levels in the phytohemagglutinin (PHA)-stimulated male human PBL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call