Abstract

Singlet–triplet adiabatic excitation energies (AES−T) of the parent and variously substituted phenyl cations, as well as the parent benzannelated derivatives up to anthracenyl, were calculated at the G4(MP2) and G4 levels of theory. The G4(MP2)/G4 AES−T estimates range up to 40 kJ/mol higher than prior density functional theory (DFT)-based predictions for these cations and suggest that AES−T and ground state multiplicity structure–property trends for phenyl cations previously proposed in the literature need to be re-assessed at higher levels of theory. In general, Hartree–Fock, DFT, and semiempirical methods do a poor job describing the singlet–triplet excitation energetics of these systems. Only modest effects of different solvation models (SMD, IEF-PCM, and C-PCM) and different polar protic through apolar aprotic solvents are evident on the calculated AES−T of the phenyl cation. Electron-donating substituents on the phenyl cation substantially lower the AES−T to an extent where some functional groups (–NH2, N(CH3)2, OCH3, and SCH3) can result in triplet ground states depending on their position relative to the cation. In contrast to the phenyl and 1- and 2-naphthyl cations, which are predicted to be ground state singlets, the three parent anthracenyl cations will be ground state triplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call