Abstract

An organic material thin layer can be used to resonantly absorb light and nonradiatively transfer excitation to an adjacent inorganic quantum well the optical nonlinearities of which can in this way be turned on more efficiently than by direct optical pumping. We theoretically consider this process in a hybrid structure based on crystalline tetracene in which the singlet exciton energy is close to twice the one of a triplet exciton and thermally activated singlet exciton fission into two triplets can be efficient. We investigate how the temperature dependence of the singlet exciton diffusion length affects the functional properties of such hybrid organic-inorganic nanostructures based on tetracene. We show how temperature activated fission opens a new possibility to turn on and off the indirect pumping due to energy transfer from the organic into the inorganic subsystem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.