Abstract

We show that entirely information theoretic methods, based on von Neumann entropies and their properties, can be used to derive Singleton bounds on the performance of entanglement-assisted hybrid classical-quantum (EACQ) error correcting codes. Concretely we show that the triple-rate region of qubits, cbits and ebits of possible EACQ codes over arbitrary alphabet sizes is contained in the quantum Shannon theoretic rate region of an associated memoryless erasure channel, which turns out to be a polytope. We show that a large part of this region is attainable by certain EACQ codes, whenever the local alphabet size (i.e. Hilbert space dimension) is large enough, in keeping with known facts about classical and quantum minimum distance separable (MDS) codes: in particular all of its extreme points and several important extremal lines. Full details in [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.