Abstract
PurposeThis project aims to develop and evaluate a method for accurately determining time-integrated activities (TIAs) in single-time-point (STP) dosimetry for molecular radiotherapy. It performs a model selection (MS) within the framework of the nonlinear mixed-effects (NLME) model (MS–NLME).MethodsBiokinetic data of [111In]In-DOTATATE activity in kidneys at T1 = (2.9 ± 0.6) h, T2 = (4.6 ± 0.4) h, T3 = (22.8 ± 1.6) h, T4 = (46.7 ± 1.7) h, and T5 = (70.9 ± 1.0) h post injection were obtained from eight patients using planar imaging. Eleven functions were derived from various parameterisations of mono-, bi-, and tri-exponential functions. The functions’ fixed and random effects parameters were fitted simultaneously (in the NLME framework) to the biokinetic data of all patients. The Akaike weights were used to select the fit function most supported by the data. The relative deviations (RD) and the root-mean-square error (RMSE) of the calculated TIAs for the STP dosimetry at T3 = (22.8 ± 1.6) h and T4 = (46.7 ± 1.7) h p.i. were determined for all functions passing the goodness-of-fit test.ResultsThe function f_{4d} left( t right) = A_{1} /left{ {left( {frac{1 - alpha }{{lambda_{1} + lambda_{{{text{phys}}}} }}} right) - left( {frac{alpha }{{lambda_{2} + lambda_{{{text{phys}}}} }}} right) - left( {frac{1 - 2alpha }{{lambda_{bc} + lambda_{{{text{phys}}}} }}} right)} right} cdot e^{{ - lambda_{{{text{phys}}}} t}} cdot left{ {left( {1 - alpha } right) cdot e^{{ - lambda_{1} t}} - alpha cdot e^{{ - lambda_{2} t}} - left( {1 - 2alpha } right) cdot e^{{ - lambda_{bc} t}} } right} with four adjustable parameters and lambda_{bc} = frac{{{text{ln}}left( 2 right)}}{{1;{text{ min}}}} was selected as the function most supported by the data with an Akaike weight of (45 ± 6) %. RD and RMSE values show that the MS–NLME method performs better than functions with three or five adjustable parameters. The RMSEs of TIANLME–PBMS and TIA3-parameters were 7.8% and 10.9% (for STP at T3), and 4.9% and 10.7% (for STP at T4), respectively.ConclusionAn MS–NLME method was developed to determine the best fit function for calculating TIAs in STP dosimetry for a given radiopharmaceutical, organ, and patient population. The proof of concept was demonstrated for biokinetic 111In-DOTATATE data, showing that four-parameter functions perform better than three- and five-parameter functions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.