Abstract

Single molecule fluorescence correlation spectroscopy has been used to investigate the photodynamics of isolated single multichromophoric polymer chains of the conjugated polymers MEH-PPV and F8BT on the microsecond to millisecond time scale. The experimental results (and associated kinetic modeling) demonstrate that (i) triplet exciton pairs undergo efficient triplet-triplet annihilation on the <<30 micros time scale, (ii) triplet-triplet annihilation is the dominant mechanism for triplet decay at incident excitation powers > or =50 W/cm(2), and (iii) singlet excitons are quenched by triplet excitons with an efficiency on the order of (1)/(2). The high efficiency of this latter process ensures that single molecule fluorescence spectroscopy can be effectively used to indirectly monitor triplet exciton population dynamics in conjugated polymers. Finally, correlation spectroscopy of MEH-PPV molecules in a multilayer device environment reveals that triplet excitons are efficiently quenched by hole polarons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.