Abstract

The reaction of singlet oxygen (1O2) generated by ultraviolet-A (UVA)-visible light (lambda > 330 nm) irradiation of air-saturated solutions of hematoporphyrin with phenolic compounds in the presence of a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), gave an electron spin resonance (ESR) spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO-*OH). In contrast, the ESR signal of 5,5-dimethyl-2-pyrrolidone-N-oxyl, an oxidative product of DMPO, was observed in the absence of phenolic compounds. The ESR signal of DMPO-*OH decreased in the presence of either a *OH scavenger or a quencher of *O2 and under anaerobic conditions, whereas it increased depending on the concentration of DMPO. These results indicate both 1O2- and DMPO-mediated formation of free *OH during the reaction. When DMPO was replaced with 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO), no DEPMPO adduct of oxygen radical species was obtained. This suggests that 1O2, as an oxidizing agent, reacts little with DEPMPO, in which a strong electron-withdrawing phosphoryl group increases the oxidation potential of DEPMPO compared with DMPO. A linear correlation between the amounts of DMPO-*OH generated and the oxidation potentials of phenolic compounds was observed, suggesting that the electron-donating properties of phenolic compounds contribute to the appearance of *OH. These observations indicate that 1O2 reacts first with DMPO, and the resulting DMPO-1O2 intermediate is immediately decomposed/reduced to give *OH. Phenolic compounds would participate in this reaction as electron donors but would not contribute to the direct conversion of 1O2 to *OH. Furthermore, DEPMPO did not cause the spin-trapping agent-mediated generation of *OH like DMPO did.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.