Abstract

Wildfires or prescribed fires release pyrogenic dissolved organic matter (pyDOM) into the environment, which can photochemically produce singlet oxygen (1O2) in sun-lit surface waters. 1O2 quantum yields (ΦΔ) are well-studied for non-pyrogenic DOM, but little is understood about the 1O2 generation from pyDOM, especially the ΦΔ values from real wildfire samples and their wavelength dependence. In this study, time-resolved 1O2 phosphorescence was used to determine the wavelength-dependent ΦΔ values for pyDOM generated from wildfire char and a series of lab-prepared chars produced by combusting oak and pine wood. Wildfire and most lab-prepared pyDOM generally had similar ΦΔ values (2.1-2.7%) at 365 nm compared to the reference Suwannee River Natural Organic Matter (SRNOM) isolate (2.4%). Interestingly, pyDOM from the highest combustion temperature char was found to possess extremely low ΦΔ values compared to SRNOM and other pyDOM at all excitation wavelengths. In addition, it was revealed that the predicted steady-state concentration of 1O2 from pyDOM was similar to that from SRNOM, indicating that the addition of pyDOM from wood chars may not strongly impact surface water photochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.