Abstract

Singlet oxygen generation potential of two novel free-base-porphyrin photocatalysts was investigated. The free-base-porphyrin-sensitized Fe3O4 magnetic nanoparticles (MNPs) were tested for the degradation of the model pollutant Bisphenol A (BPA) in aqueous solution, for the first time. MNPs with either cubic or spherical shape were synthesized using the sonochemical approach, followed by sensitizing with photoactive 4,4′,4′′,4′′′-(Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP). The resulted photocatalysts were characterized in detail by scanning and transmission electron microscopy, Brunauer–Emmett–Teller analysis, spectral techniques and vibrating sample magnetometry. The electron spin resonance experiments have confirmed the high activity of the photocatalysts through the efficient formation of singlet oxygen in solution. The optimum operational parameters for BPA degradation were established as follows: 1.0 μmol L−1 BPA, 1.0 g L−1 of photocatalyst, 100 μmol L−1 H2O2, under UVA irradiation. In these conditions, the results for both photocatalysts revealed that after only 10 min of reaction, over 64% and ca. 90% of BPA have been removed from solution in the absence and presence of H2O2, respectively. Whereas after 60 minutes of treatment, only 24% of BPA in real wastewater effluent samples were removed under UVA irradiation in the absence of H2O2, showing the high complexity of real wastewater. Moreover, both photocatalysts were successfully used for BPA removal in three consecutive runs, without significant loss of catalytic features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.